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Abstract. Particle sensing technology has shown great potential for monitoring particulate matter (PM) with very few 11 

temporal and spatial restrictions because of low-cost, compact size, and easy operation. However, the performance of low-12 

cost sensors for PM monitoring in ambient conditions has not been thoroughly evaluated. Monitoring results by low-cost 13 

sensors are often questionable. In this study, a low-cost fine particle monitor (Plantower PMS 5003) was co-located with a 14 

reference instrument, named Synchronized Hybrid Ambient Real-time Particulate (SHARP) monitor, in Calgary Varsity air 15 

monitoring station from December 2018 to April 2019. The study evaluated the performance of this low-cost PM sensor in 16 

ambient conditions and calibrated its readings using simple linear regression (SLR), multiple linear regression (MLR), and 17 

two more powerful machine learning algorithms using random search techniques for the best model architectures. The two 18 

machine learning algorithms are XGBoost and feedforward neural network (NN). Field evaluation showed that the Pearson r 19 

between the low-cost sensor and the SHAPR instrument was 0.78. Fligner and Killeen (F-K) test indicated a statistically 20 

significant difference between the variances of the PM2.5 values by the low-cost sensor and by the SHARP instrument. Large 21 

overestimations by the low-cost sensor before calibration were observed in the field and were believed to be caused by the 22 

variation of ambient relative humidity. The root mean square error (RMSE) was 9.93 when comparing the low-cost sensor 23 

with the SHARP instrument. The calibration by the feedforward NN had the smallest RMSE of 3.91 in the test dataset, 24 

compared to the calibrations by SLR (4.91), MLR (4.65), and XGBoost (4.19). After calibrations, the F-K test using the test 25 

dataset showed that the variances of the PM2.5 values by the NN and the XGBoost and by the reference method were not 26 

statistically significantly different. From this study, we conclude that feedforward NN is a promising method to address the 27 

poor performance of the low-cost sensors for PM2.5 monitoring. In addition, the random search method for hyperparameters 28 

was demonstrated to be an efficient approach for selecting the best model structure. 29 
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1 Introduction 32 

Particular matter (PM), whether it is natural or anthropogenic, has pronounced effects on human health, visibility, and global 33 

climate (Charlson et al., 1992; Seinfeld and Pandis, 1998). To minimize the harmful effects of PM pollution, the 34 

Government of Canada launched the National Air Pollution Surveillance (NAPS) program in 1969 to monitor and regulate 35 

PM and other criteria air pollutants in populated regions, including ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), 36 

nitrogen dioxide (NO2). Currently, PM monitoring is routinely carried out at 286 designated air sampling stations in 203 37 

communities in all provinces and territories of Canada (Government of Canada, 2019). Many of the monitoring stations use 38 

Beta Attenuation Monitor (BAM), which is based on the adsorption of beta radiation, or Tapered Element Oscillating 39 

Microbalance (TEOM) instrument, which is a mass-based technology to measure PM concentrations. An instrument that 40 

combines two or more technologies, such as Synchronized Hybrid Ambient Real-time (SHARP), is also used in some 41 

monitoring stations. The SHARP instrument combines light scattering with beta attenuation technologies to determine PM 42 

concentrations. 43 

Although these instruments are believed to be accurate for measuring PM concentration and have been widely used by 44 

many air monitoring stations worldwide (Chow and Watson, 1998; Patashnick and Rupprecht, 1991), they have common 45 

drawbacks: they can be challenging to operate, bulky, and expensive. The instrument costs from 8,000 Canadian dollars 46 

(CAD) to tens of thousands of dollars (Chong and Kumar, 2003). The SHARP instrument used in this study as a reference 47 

method costs approximately $40,000 (CDNova Instrument Ltd., 2017). Significant resources, such as specialized personnel 48 

or technicians, are also required for regular system calibration and maintenance. In addition, the sparsely spread stations may 49 

only represent PM levels in limited areas near the stations because PM concentrations vary spatially and temporally 50 

depending on local emission sources as well as meteorological conditions (Xiong et al., 2017). Such a low-resolution PM 51 

monitoring network cannot support public exposure and health effects studies that are related to PM, because these studies 52 

require high spatial- and temporal-resolution of monitoring network in the community (Snyder et al., 2013). In addition, the 53 

well-characterized scientific PM monitors are not portable due to their large size and volumetric flow rate, which means they 54 

are not practical for measuring personal PM exposure (White et al., 2012). 55 

As a possible solution to the above problems, a large number of low-cost PM sensors could be deployed, and a high-56 

resolution PM monitoring network could be constructed. Low-cost PM sensors are portable and commercially available. 57 

They are cost-effective and easy to deploy, operate, and maintain, which offers significant advantages compared to 58 

conventional analytical instruments. If many low-cost sensors are deployed, PM concentrations can be monitored 59 

continuously and simultaneously at multiple locations for a reasonable cost (Holstius et al., 2014). A dense monitoring 60 

network using low-cost sensors can also assist in mapping hotspots of air pollution, creating emission inventories of air 61 

pollutants, and estimating adverse health effects due to personal exposure to the PM (Kumar et al., 2015). 62 
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However, low-cost sensors present challenges for broad application and installation. Most sensor systems have not been 63 

thoroughly evaluated (Williams et al., 2014), and the data generated by these sensors are of questionable quality (Wang et 64 

al., 2015). Currently, most low-cost sensors are based on laser light scattering technology (LLS), and the accuracy of LLS is 65 

mostly affected by particle composition, size distribution, shape, temperature, and relative humidity (Jayaratne et al., 2018; 66 

Wang et al., 2015). 67 

Several studies evaluated LLS sensors by comparing the performance of low-cost sensors with medium- to high-cost 68 

instruments under laboratory and ambient conditions. For example, Zikova et al. (2017) used low-cost Speck monitors to 69 

measure PM2.5 concentrations in indoor and outdoor environments, and the low-cost sensors overestimated the concentration 70 

by 200% for indoor and 500% for outdoor, compared to a reference instrument – Grimm 1.109 dust monitor. Jayaratne et al. 71 

(2018) reported that PM10 concentrations generated by a Plantower low-cost particle sensor (PMS 1003) were 46% greater 72 

than a TSI 8350 DustTrak DRX aerosol monitor under a foggy environment. Wang et al. (2015) compared PM 73 

measurements from three low-cost LLS sensors – Shinyei PPD42NS, Samyoung DSM501A, and Sharp GP2Y1010AU0F – 74 

with a SidePack (TSI Inc.) using smoke from burning incense. High linearity was found with R2 greater than 0.89, but the 75 

responses depended on particle composition, size, and humidity. Air Quality Sensor Performance Evaluation Center (AQ-76 

SPEC) of South Coast Air Quality Management District (SCAQMD) also evaluated the performances of three Purple Air 77 

PA-II sensors (model: Plantower PMS 5003) by comparing their readings with two United States Environmental Protection 78 

Agency (US EPA) Federal Equivalent Method (FEM) instruments – BAM (MetOne) and Grimm dust monitors in laboratory 79 

and field environments in south California (Papapostolou et al., 2017). Overall, the three sensors showed moderate to good 80 

accuracy, compared to the reference instrument for PM2.5 for a concentration range between 0 to 250 µg m-3. Lewis et al. 81 

(2016) evaluated low-cost sensors in the field for O3, nitrogen oxide (NO), NO2, volatile organic compounds (VOCs), PM2.5, 82 

and PM10; only O3 sensors showed good performance compared to the reference measurements. 83 

Several studies developed calibration models using multiple techniques to improve low-cost sensors’ performance. For 84 

example, De Vito et al. (2008) tested feedforward neural network (NN) calibration for benzene monitoring and reported a 85 

further calibration was needed for low concentrations. Bayesian optimization was also used to search feedforward NN 86 

structures for the calibrations of CO, NO2, and NOx low-cost sensors (De Vito et al., 2009). Zheng et al. (2018) calibrated 87 

Plantower low-cost particle sensor PMS 3003 by fitting a linear least-squares regression model. A nonlinear response was 88 

observed when ambient PM2.5 exceeded 125 ug m-3. The study concluded that a quadratic fit was more appropriate than a 89 

linear model to capture this nonlinearity. 90 

Zimmerman et al. (2018) explored three different calibration models, including laboratory univariate linear regression, 91 

empirical MLR, and a more modern machine learning algorithm, random forests (RF), to improve Real-time Affordable 92 

Multiple-Pollutant (RAMP) sensor’s performance. They found that the sensors calibrated by RF models improved their 93 

accuracy and precision over time, with average relative errors of 14% for CO, 2% for CO2, 29% for NO2, and 15% for O3. 94 
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The study concluded that combing RF models with low-cost sensors is a promising approach to address the poor 95 

performance of low-cost air quality sensors. 96 

Spinelle et al. (2015) reported several calibration methods for low-cost O3 and NO2 sensors. The best calibration method 97 

for NO2 was an NN algorithm with feedforward architecture. O3 could be calibrated by simple linear regression (SLR). 98 

Spinelle et al. (2017) also evaluated and calibrated NO, CO, and CO2 sensors, and the calibrations by feedforward NN 99 

architectures showed the best results. Similarly, Cordero et al. (2018) performed a two-step calibration for an AQmesh NO2 100 

sensor using supervised machine learning regression algorithms, including NNs, RFs, and Support Vector Machines 101 

(SVMs). The first step produced an explanatory variable using multivariate linear regression. In the second step, the 102 

explanatory variable was fed into machine learning algorithms, including RF, SVM, and NN. After the calibration, the 103 

AQmesh NO2 sensor met the standards of accuracy for high concentrations of NO2 in the European Union’s Directive 104 

2008/50/EC on Air Quality. They highlighted the need to develop an advanced calibration model, especially for each sensor, 105 

as the responses of individual sensors are unique. 106 

Williams et al. (2014) evaluated eight low-cost PM sensors; the study showed frequent disagreement between the low-107 

cost PM sensors and FEMs. In addition, the study concluded that the performances of the low-cost sensors were significantly 108 

impacted by temperature and relative humidity (RH). Recurrent NN architectures were also tested for the calibrations of 109 

some gas sensors (De Vito et al., 2018; Esposito et al., 2016). The results showed that the dynamic approaches performed 110 

better than traditional static calibration approaches. Calibrations of PM2.5 sensors were also reported in recent studies. Lin et 111 

al. (2018) performed two-step calibrations for PM2.5 sensors using 236 hourly data collected on buses and road cleaning 112 

vehicles. The first step was to construct a linear model, and the second step used RF machine learning for further calibration. 113 

The RMSE after the calibrations was 14.76 µg m-3, compared to a reference method. The reference method used in this study 114 

was a Dylos DCI1700 device, which is not a US EPA federal reference method (FRM) or FEM. Loh and Choi (2019) trained 115 

and tested SVC, k-nearest neighbor, RF, and XGBoost machine learning algorithms to calibrate PM2.5 sensors using 319 116 

hourly data. XGBoost archived the best performance with a RMSE of 5.0 µg m-3. However, the low-cost sensors in this 117 

study were not co-located with the reference method, and the machine learning models were not tested using unseen data 118 

(test data) for predictive power and overfitting. 119 

Although there are studies in calibrating low-cost sensors, most of them focused on gas sensors or used short-term data to 120 

calibrate PM sensors. To our best knowledge, no one has reported studies on PM sensor calibration using random search 121 

techniques for the best machine learning model’s configuration under ambient conditions during different seasons. In this 122 

study, a low-cost fine particle monitor (Plantower PMS 5003) was co-located with a SHARP monitor Model 5030 at Calgary 123 

Varsity Air Monitoring Station in an outdoor environment from December 7, 2018, to April 26, 2019. The SHARP 124 

instrument is the reference method in this study and is a US EPA FEM (US EPA, 2016). The objectives of this stuudy are: 125 

(1) to evaluate the performance of the low-cost PM sensor in a range of outdoor environmental conditions by comparing its 126 
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PM2.5 readings with those obtained from the SHARP instrument; and (2) to assess four calibration methods: a) a SLR or 127 

univariate linear regression based on the low-cost sensor values; b) a multiple linear regression (MLR) using the PM2.5, RH, 128 

and temperature measured by the low-cost sensor as predictors; c) a decision-tree-based ensemble algorithm, called 129 

XGBoost or Extreme Gradient Boosting; and d) a feedforward NN architecture with a backpropagation algorithm. 130 

XGBoost and NN are the most popular algorithms used on Kaggle – a platform for data science and machine learning 131 

competition. In 2015, 17 winners out of 29 competitions on Kaggle used XGBoost, 11 winners used deep NN algorithm 132 

(Chen and Guestrin, 2016). 133 

This study is unique in the following ways: 134 

1) To the best of our knowledge, this is the first comprehensive study using long-term data to calibrate low-cost 135 

particle sensors in the field. Most previous studies focused on calibrating gas sensors (Maag et al., 2018). There are 136 

two studies on PM sensor calibrations using machine learning, but they used a short-term dataset that did not 137 

include seasonal changes in ambient conditions (Lin et al., 2018; Loh and Choi, 2019). The shortcomings of the two 138 

studies were discussed above. 139 

2) Although several studies researched the calibration of gas sensors using NN, this study explores multiple 140 

hyperparameters to search for the best NN architecture. Previous research configured one to three hyperparameters, 141 

compared to six in this study (De Vito et al., 2008, 2009, 2018; Esposito et al., 2016; Spinelle et al., 2015, 2017). In 142 

addition, this study tested the Rectified Linear Unit (ReLU) as the activation function in the feedforward NN. 143 

Compared to sigmoid and tanh activation functions used in the previous studies for NN calibration models, the 144 

ReLU function can accelerate the convergence of stochastic gradient descent to a factor of 6 (Krizhevsky et al., 145 

2017). 146 

3) Previous NN and tree-based calibration models used manual search or grid search for hyperparameters tuning. This 147 

study introduced random search method for the best calibration models. Random search is more efficient than 148 

traditional manual and grid search (Bergstra and Bengio, 2012) and evaluates more of the search space, especially 149 

when search space is more than three dimensions (Timbers, 2017). 150 

2 Method 151 

2.1 Data preparation 152 

One low-cost sensor unit was provided by Calgary-based company SensorUp and deployed at the Varsity station in the 153 

Calgary Reginal Airshed Zone (CRAZ) in Calgary, Alberta, Canada. The unit contains one sensor, one electrical board, and 154 

one housing as a shelter. The sensor in the unit is Plantower PMS 5003, and it measured outdoor fine particle (PM2.5) 155 
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concentrations (µg m-3), air temperature (°C), and RH (%) every six seconds. The minimum detectable particle diameter by 156 

the sensor is 0.3 µm. The instrument costs approximately $20 CAD and is referred to as the low-cost sensor in this paper. 157 

The low-cost sensor is based on LLS technology; PM2.5 mass concentration is estimated from the detected amount of 158 

scattered light. The LLS sensor is installed on the electrical board and then placed in the shelter for outdoor monitoring. The 159 

unit has a wireless link to a router in the Varsity station. A picture of the low-cost sensor and the monitoring environment 160 

where the low-cost sensor unit and the SHARP instrument were co-located is provided in Fig. 1. The router uses cellular 161 

service to transfer the data from the low-cost sensor to SensorUp’s cloud data storage system. The measured outdoor PM2.5, 162 

temperature, and RH data at a six-second interval from 00:00 on December 7, 2018, to 23:00 on April 26, 2019, were 163 

downloaded from the cloud data storage system for evaluation and calibration. 164 

 165 

Figure 1: The low-cost sensor used in the study and the ambient inlet of the reference method – SHARP Model 5030 166 

The reference instrument used to evaluate the low-cost sensor is a Thermal Fisher Scientific’s SHARP Model 5030. The 167 

SHARP instrument was installed at the Calgary Varsity station by CRAZ. The SHARP instrument continuously uses two 168 

compatible technologies, light scattering and beta attenuation, to measure PM2.5 every six minutes with an accuracy of ±5%. 169 

The SHARP instrument is operated and maintained by CRAZ in accordance with the provincial government’s guideline 170 

outlined in Alberta’s air monitoring directive. Hourly PM2.5 data are published on the Alberta Air Data Warehouse website 171 

(http://www.airdata.alberta.ca/). The Calgary Varsity station also continuously monitors CO, methane, oxides of nitrogen, 172 

non-methane hydrocarbons, outdoor air temperature, O3, RH, total hydrocarbon, wind direction, and wind speed. Detailed 173 

information on the analytical systems for the CRAZ Varsity station can be found on their website 174 

(https://craz.ca/monitoring/info-calgary-nw/). 175 

The ambient conditions in this study measured by the SHARP instrument are presented in Table 1. 176 
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Table 1: Ambient Condition Measured by SHARP 177 

Climate Data SHARP Value 

Temperature  -31.4 ℃ ~ 19 ℃ 

RH 10% ~ 99% 

Wind Speed  4.3 ~ 37.1 km/h 10 m 

 178 

The following steps were taken to process the raw data from 00:00 on December 7, 2018, to 23:00 on April 26, 2019: 179 

1) The six-second interval data recorded by the low-cost sensor, including PM2.5, temperature, and RH, were averaged 180 

into hourly data to pair with SHARP data because only hourly SHARP data are publicly available.  181 

2) The hourly sensor data and hourly SHARP data were combined into one structured data table. PM2.5, temperature, 182 

and RH by the low-cost sensor as well as PM2.5 by SHARP columns in the data table were selected. The data table 183 

then contains 3,384 rows and four columns. Each row represents one hourly data point. The columns include the data 184 

measured by the low-cost sensor and the SHARP instrument. 185 

3) Rows in the data table with missing values were removed – 299 missing values for PM2.5 from the low-cost sensor 186 

and 36 missing values for PM2.5 from the SHARP instrument. The reason for missing data from the SHARP 187 

instrument is because of the calibration. However, the reason for missing data from the low-cost sensor is unknown. 188 

4) The data used for NN were transformed by z standardization with a mean of zero and a standard deviation of one. 189 

After the above steps, the processed data table with 3,050 rows and four columns was used for evaluation and calibration. 190 

The data file is provided in the supplementary information of this paper. Each row represents one example or sample for the 191 

training or testing by the calibration methods. 192 

2.2 Low-cost sensor evaluation 193 

Pearson correlation coefficient was used to compare the correlation for PM2.5 values between the low-cost sensor and the 194 

SHARP. SHAPR was the reference method. The PM2.5 data by the low-cost sensor and SHARP were also compared using 195 

root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE). 196 

Fligner and Killeen test (F-K test) was used to evaluate the equality (homogeneity) of variances for PM2.5 values between 197 

the low-cost sensor and the SHARP instrument (Fligner and Killeen, 1976). F-K test is a superior option in terms of 198 

robustness and power when data are non-normally distributed, the population means are unknown, or outliers cannot be 199 

removed (Conover et al., 1981; de Smith, 2018). The null hypothesis of the F-K test is that all populations’ variances are 200 

equal; the alternative hypothesis is that the variances are statistically significantly different. 201 
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2.3 Calibration 202 

Four calibration methods were evaluated: SLR, MLR, XGBoost, and NN. Some predictions from the SLR, MLR, and 203 

XGBoost have negative values because they extrapolate observed values and regression is unbounded. When the predicted 204 

PM2.5 values generated by these calibration methods were negative, the negative values were replaced with the sensor data. 205 

MLR, XGBoost, and feedforward NN use the PM2.5, temperature, and RH data measured by the low-cost sensor as 206 

inputs. The PM2.5 measured by the SHARP instrument is used as the target to supervise the machine learning process. The 207 

processed dataset with 3,050 rows and four columns was randomly shuffled and then divided into a training set, which was 208 

the data used to build models and minimize the loss function, and a test set, which was the data that the model has never run 209 

with before testing (Si et al., 2019). The test dataset was only used once and gave an unbiased evaluation of the final model’s 210 

performance. The evaluation was to test the ability of the machine learning model to provide sensible predictions with new 211 

inputs (LeCun et al., 2015). The training dataset had 2,440 examples (samples). The test dataset had 610 examples (samples). 212 

2.3.1 Simple linear regression and multiple linear regression 213 

The calibration by a SLR used Equation 1. 214 

𝑦ො =  𝛽଴ + 𝛽ଵ × 𝑃𝑀ଶ.ହ            (1) 215 

𝛽଴and 𝛽ଵ are the model coefficient and were calculated using the training dataset. 𝑦ො is model predicted (calibrated) values. 216 

PM2.5 is the value measured by the low-cost sensor. 217 

The MLR used PM2.5, RH, and temperature measured by the low-cost sensor as predictors because the low-cost sensor 218 

only measured these parameters. The model is expressed as Equation 2. 219 

𝑦ො =  𝛽଴ + 𝛽ଵ × 𝑃𝑀ଶ.ହ + 𝛽ଶ × 𝑇 + 𝛽ଷ × 𝑅𝐻         (2) 220 

The model coefficients, 𝛽଴to 𝛽ଷ, were calculated using the training dataset with SHARP provided readings as 𝑦ො. The 221 

outputs of the models generated by the SLR and MLR were evaluated by comparing to the SHARP’s readings in the test 222 

dataset. 223 

2.3.2 XGBoost 224 

XGBoost is a scalable decision tree-based ensemble algorithm, and it uses a gradient boosting framework (Chen and 225 

Guestrin, 2016). The XGBoost was implemented using the XGBoost (Version 0.90) and sklearn (Version 0.21.2) packages 226 

in Python (Version 3.7.3). Random search method (Bergstra and Bengio, 2012) was used to tune the hyperparameters in the 227 

XGBoost algorithm, and the hyperparameters tuned include 228 

 Number of trees to fit (n_estimator) 229 

 Maximum depth of a tree (max_depth) 230 

 Step size shrinkage used in update (learning_rate) 231 
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 Subsample ratio of columns when constructing each tree (colsample_bytree) 232 

 Minimum loss reduction required to make a further partition on a leaf node of the tree (gamma) 233 

 L2 regularization (Ridge Regression) on weights (reg_lambda) 234 

 Minimum sum of instance weight needed in a child (min_child_weight) 235 

Ten-fold cross-validation was used to select the best model with minimum MSE from the random search. The best model 236 

was then evaluated against the SHARP PM2.5 data using the test dataset. 237 

2.3.3 Neural network 238 

A fully connected feedforward NN architecture was used in the study. In a fully connected NN, each unit (node) in a 239 

layer is connected to each unit in the following layer. Data from the input layer are passed through the network until the 240 

unit(s) in the output layer is (are) reached. An example of a fully connected feedforward NN is presented in Fig.2. A 241 

backpropagation algorithm is used to minimize the difference between the SHARP measured values and the predicted values 242 

(Rumelhart et al., 1986). 243 

 244 

 245 

Figure 2: Example of a Neural Network Structure 246 

The NN was implemented using the Keras (Version 2.2.4) and TensorFlow (Version 1.14.0) libraries in Python (Version 247 

3.7.3). Keras and TensorFlow were the most referenced deep learning framework in scientific research in 2017 (RStudio, 248 

2018). Keras is the front end of TensorFlow. 249 
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Learning rate, L2 regularization rate, numbers of hidden layers, number of units in the hidden layers, and optimization 250 

methods were tuned using random search method provided in the scikit-learn machine learning library. Ten-fold cross-251 

validation was used to evaluate the models. The model with the minimum MSE was considered to be the best-fit model and 252 

then used for model testing. 253 

3 Results and Discussion 254 

3.1 Sensor evaluation 255 

3.1.1 Hourly data 256 

The RMSE, MSE, and MAE between the low-cost sensor and SHARP for the hourly PM2.5 data were 10.58, 111.83, and 257 

5.74. The Pearson correlation coefficient r value was 0.78. The PM2.5 concentrations by the sensor ranged from 0 µg m-3 to 258 

178 µg m-3 with a standard deviation of 14.90 µg m-3 and a mean of 9.855 µg m-3. The PM2.5 concentrations by SHARP 259 

ranged from 0 µg m-3 to 80 µg m-3 with a standard deviation of 7.80 and a mean of 6.55 µg m-3. Both SHARP and the low-260 

cost sensor dataset had a median of 4.00 µg m-3 based on hourly data (Fig.3). The p-value from the F-K test was less than 261 

2.2×10-16, indicating that the variance of the PM2.5 values measured by the low-cost sensor was statistically significantly 262 

different from the variance of the PM2.5 values measured by the SHARP instrument. 263 

 264 

 265 

https://doi.org/10.5194/amt-2019-393
Preprint. Discussion started: 20 December 2019
c© Author(s) 2019. CC BY 4.0 License.



 
 

11 
 

 266 

Figure 3: Comparison of the Hourly PM2.5 Values between the Low-Cost PM Sensor and SHARP. Based on 3,050 hourly paired data. The 267 
low-cost sensor has 250 hourly data greater than 30 µg m-3. SHARP has 174 hourly data greater than 20 µg m-3. Bars indicate the 25th and 268 
75th percentile values, whiskers extend to values within 1.5 times IQR, and dots represent values outside of the IQR. The boxplot 269 
explanation on the right is adjusted from DeCicco (2016) 270 

3.1.2 24 Hour rolling average data 271 

Over 24 hours, the median value for SHARP was 5.38 µg m-3 and for the low-cost sensor was 5.01 µg m-3. Over five months 272 

(December 2018 to April 2019), the low-cost sensor tended to generate higher PM2.5 values compared to the SHARP 273 

monitoring data (Fig. 4) 274 

 275 
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 276 

Figure 4: PM2.5, Relative Humidity, and Temperature data on the basis of 24 hour rolling average 277 

When PM2.5 concentrations were greater than 10 µg m-3, the low-cost sensor consistently produced values that were 278 

higher than the reference method (Fig.5). When the concentrations were less than 10 µg m-3, the performance of the low-cost 279 

sensor was closed to the reference method producing slightly smaller values (Fig. 5) 280 

 281 
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 282 

Figure 5: SHARP verse Low-Cost Sensor PM2.5 Concentration (µg m-3). The yellow dashed line is a 1:1 line. The solid blue line is a 283 
regression line. (a) plot is in full scale, (b) plot is a zoom-in plot of plot a. The green circle represents data density. 284 

3.2 Calibration by simple linear regression and multiple linear regression 285 

The RMSE was 4.91 calibrated by SLR and 4.65 by MLR (Table 2). The r value was 0.74 by the SLR and 0.77 by MLR . 286 

The p-values in the F-K test by the SLR and MRL were less than 0.05, which suggested that the variances of the PM2.5 287 

values were statistically significantly different. 288 

Table 2: Calibration Results by SLR and MLR using Test Dataset 289 

Criteria Low-Cost Sensor SLR MLR 

RMSE 9.93 4.91 4.65 
MSE 98.62 24.09 21.61 

MAE 5.63 3.21 3.09 

 Pearson r 0.74 0.74 0.77 

p-value in the F-K test 7.062 ×10-09 5.81×10-13 9.90×10-10 

𝛽଴ - 2.49 8.47 

𝛽ଵ  0.41 0.46 

𝛽ଶ   -0.12 

𝛽ଷ   -0.0055 

Note: The test dataset contains 660 examples. 290 
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3.3 Calibration by XGBoost 291 

The hyperparameters selected by the random search for the best model using XGBoost is presented in Table 3. 292 

Table 3: Hyperparameters for the Best XGBoost Model 293 

XGBoost Hyperparameters Values 

Number of trees to fit (n_estimator) 37 
Maximum depth of a tree (max_depth) 9 

Step size shrinkage used in update (learning_rate) 0.33 

Subsample ratio of columns when constructing each tree (colsample_bytree) 0.83 

Minimum loss reduction required to make a further partition on a leaf node of the tree (gamma) 6.36 

L2 regularization (Ridge Regression) on weights (reg_lambda) 33.08 

Minimum sum of instance weight needed in a child (min_child_weight) 25.53 

 294 

In the training dataset, the RMSE was 3.03, and the MAE was 1.93 by the best XGBoost model. The RMSE in the test 295 

dataset reduced by 57.8% using the XGBoost from 9.93 by the sensor to 4.19 (Table 4). The p-value in the F-K test using the 296 

test dataset was 0.7256, which showed no evidence that the PM2.5 values varied with statistical significance between the 297 

XGBoost predicted values and SHARP measured values. 298 

Table 4: Calibration Results by XGBoost using Test Dataset 299 

Criteria Low-Cost Sensor XGBoost 

RMSE 9.93 4.19 

MSE 98.62 17.61 

MAE 5.63 2.63 

 Pearson r 0.74 0.82 

p-value in the F-K test 7.062 ×10-09 0.7256 
Note: The test dataset contains 610 examples. 300 

3.4 Calibration by neural network   301 

The hyperparameters for the best NN model are presented in Table 5. 302 

Table 5: Hyperparameters for the Best Neural Network Model 303 

NN Hyperparameters Values 

Learning_rate 0.001 
L2 regularization 0.01 

Numbers of hidden layer(s) 5 

Numbers of units in the hidden layer(s) 32-32-32-32-32 

Optimization method Nadam 
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Epochs 100 

 304 

In the training dataset, the RMSE was 3.22, and the MAE was 2.17 by the best NN-based model. The RMSE reduced by 305 

60% using the NN from 9.93 to 3.91 in the test dataset (Table 6). The p-value in the F-K test was 0.43, which suggested that 306 

the variances in the PM2.5 values were not statistically significantly different between the NN predicted values and SHARP 307 

measured values. 308 

Table 6: Calibration Results by Neural Network using Test Dataset 309 

Criteria  Low-Cost Sensor Neural Network 

RMSE 9.93 3.91 
MSE 98.62 15.26 

MAE 5.63 2.38 

Pearson r  0.74 0.85 

p-value in the F-K test 7.062 ×10-09 0.43 
Note: the test dataset includes 610 examples. 310 

3.5 Discussion 311 

3.5.1 Relative humidity impact 312 

RH has significant effects on the low-cost sensor’s responses. The RH trend matched the low-cost sensor’s PM2.5 trend 313 

closely. The spikes in the low-cost sensor’s PM2.5 trend corresponded with the increases of RH values, and the low-cost 314 

sensor intended to produce inaccurate high PM2.5 values when RH suddenly increased (Fig. 4). However, the relationship 315 

between PM2.5 and RH was not linear (Fig. 6) 316 
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 317 

Figure 6: PM2.5 verse Relative Humidity 318 

3.5.2 Calibration assessment 319 

Descriptive statistics of the PM2.5 concentrations in the test dataset for SHARP, low-cost sensor, XGBoost, NN, SLR, and 320 

MLR are presented in Table 7. The arithmetic mean of the PM2.5 concentrations measured by the low-cost sensor was 321 

9.44 µg m-3. In contrast, the means of the PM2.5 concentrations were 6.44 µg m-3 by SHARP, 6.40 µg m-3 by XGBoost, and 322 

6.09 µg m-3 by NN. 323 

Table 7: Descriptive statistics of PM2.5 Concentrations using the Test Dataset 324 

PM2.5 Concentration 
(µg m–3) 

SHARP 
Low-Cost 
Sensor 

XGBoost NN SLR MLR 

Minimum 0.00 0.00 0.00 0.19 2.49 0 

1st quartile 2.00 0.083 2.09 1.78 2.83 3.27 

Median 4.00 4.00 4.98 4.16 4.13 4.79 

Mean 6.44 9.44 6.40 6.09 6.37 6.42 

3rd quartile 8.00 11.94 8.61 8.20 7.39 7.18 

Maximum 49.00 103.33 39.94 47.19 44.97 48.56 
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SD 7.32 13.53 6.03 6.23 5.57 5.67 

 325 

NN and XGBoost produced data distributions that were similar to SHARP (Fig. 7). SLR had the worst performance. 326 

Fig. 7 shows that SLR could not predict low concentrations. The predictions made by NN and XGBoost ranged from 327 

0.19 µg m-3 to 47.19 µg m-3 and from 0.00 µg m-3 to 39.94 µg m-3. 328 

 329 

Figure 7: Data Density Comparison in the Test Dataset. Based on 610 Test Examples. NN: neural network, MRL: Multiple Linear 330 

Regression, SLR: Simple Linear Regression. PM2.5 data greater than 30 µg m-3 are not shown in the figure. See the boxplot explanation in 331 

Figure 3. 332 

 333 

 334 
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 335 

Figure 8: Data Distribution Comparison. Based on 610 Test Examples. NN: neural network, MRL: Multiple Linear Regression, SLR: 336 

Simple Linear Regression. 337 

 338 

In the test dataset, the NN produced the lowest MAE of 2.38 (Fig. 9). The MAEs were 2.63 by XGBoost, 3.09 by MLR, 339 

and 3.21 by SLR, when compared with the PM2.5 data measured by the SHARP instrument. The NN also had the lowest 340 

RMSE score in the test dataset. The RMSEs were 3.91 for the NN, 4.19 for XGBoost, and 9.93 for the low-cost sensor 341 

(Fig. 9). The Pearson r value by the NN was 0.85, compared to 0.74 by the low-cost sensor. 342 

 343 

 344 
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 345 

Figure 9: Performances of Different Calibration Methods. Based on 610 Test Examples. NN: neural network, MRL: Multiple Linear 346 
Regression, SLR: Simple Linear Regression. 347 

The XGBoost and NN machine learning algorithms have a better performance, compared to traditional SLR and MRL 348 

calibration methods. NN calibration reduced RMSE by 60%. Both NN and XGBoost demonstrated the ability to correct the 349 

bias for high concentrations made by the low-cost sensor (Fig. 10 and Fig. 11). Most of the values that were greater than 350 

10 µg m-3 in the NN model fall closer to the yellow 1:1 line (Fig. 10). NN had slightly better performance for low 351 

concentrations compared to XGBoost. 352 
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 353 

Figure 10: Comparison between the NN predictions and SHARP. Based on 610 test examples. Plot (a) is in full scale. Plot (b) is a zoom-354 
in plot of plot (a). The solid blue line is a regression line. The yellow dashed line is a 1:1 line. The green circle represents data density. The 355 
grey area along the regression line represents 1 standard deviation. 356 

 357 
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Figure 11: Comparison between the XGBoost predictions and SHARP. Based on 610 test examples. NN: Neural Network. Plot (a) is in 358 
full scale. Plot (b) is a zoom-in plot of plot (a). The solid blue line is a regression line. The yellow dashed line is a 1:1 line. The green 359 
circle represents data density. The grey area along the regression line represents 1 standard deviation. 360 

4 Conclusions 361 

In this study, we evaluated one low-cost sensor against a reference instrument – SHARP – using 3,050 hourly data from 362 

00:00 on December 7, 2018, to 23:00 on April 26, 2019. The p-value from the F-K test suggested that the variances in the 363 

PM2.5 values were statistically significantly different between the low-cost sensor and the SHARP instrument. Based on the 364 

24-hour rolling average, the low-cost sensor in this study tended to report higher PM2.5 values compared to the SHARP 365 

instrument. The low-cost sensor had strong bias when PM2.5 concentrations were greater than 10 µg m-3. The study also 366 

showed that the sensor’s bias responses are likely caused by the sudden changes of RH. 367 

Four calibration methods were tested and compared, including SLR, MLR, NN, and XGBoost. The p-values from the 368 

F-K tests for the XGBoost and NN were greater than 0.05, which indicated that, after calibration by the XGBoost and the 369 

NN, the variances of the PM2.5 values were not statistically significantly different from the variance of the PM2.5 values 370 

measured by the SHARP instrument. In contrast, the p-values from the F-K tests for the SLR and MLR were still less than 371 

0.05. The NN generated the lowest RMSE score in the test dataset with 610 samples. The RMSE by NN was 3.91, the lowest 372 

of the four methods. RMSEs were 4.91 by SLP, 4.65 by MLR, and 4.19 by XGBoost. 373 

However, a wide installation of low-cost sensors may still face challenges, including 374 

 Durability of low-cost sensor. The low-cost sensor used in the study was deployed in ambient environment. We 375 

installed four sensors between December 7, 2018, and June 20, 2019. Only one sensor lasted approximately five 376 

months; the data from this sensor was used in this study. The other three sensors only lasted two weeks to one 377 

month and collected limited data. These three sensors did not collect enough data for machine learning and, 378 

therefore, were not used in this study. 379 

 Missing data. In this study, the low-cost sensor dataset has 299 missing values for PM2.5 concentrations. The reason 380 

for the missing data is unknown. 381 

 Transferability of machine learning models. The models, developed by the two more powerful machine learning 382 

algorithms and used to calibrate the low-cost sensor data, tend to be sensor-specific because of the nature of 383 

machine learning. Further research is needed to test the transferability of the models for broader use. 384 

 385 

 386 

 387 

 388 

 389 
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